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STRESSES IN SOME ANISOTROPIC MATERIALS
DUE TO INDENTATION AND SLIDING

W.T. CHEN

International Business Machines Corporation, Systems Development Division, Endicott, N.Y.

Abstract—This paper is concerned with the stress field in Hertzian contact of parallel cylinders compqsed of some
general anisotropic materials, and of the Hertzian contact of transversely isotropic sphericalAbo'dles. Explicit
analytical expressions are found for the stress components in each case. Numerical results indicate that the
maximum shear stress distribution may deviate significantly from that of the isotropic case.

1. INTRODUCTION

THE analysis of deformations of two elastic bodies in contact with each other usually rests
upon the Hertzian contact model in linear elasticity. The application of this model to
engineering problems has met with success (e.g. MacGregor [1]). The Hertz contact
problem considers two bodies characterized by two principal radii of curvature in the
contact region. We shall restrict ourselves to contact of parallel cylinders (plane strain),
discs (plane stress) and spheres. Usually the size of the area of contact is small in comparison
to the radius of curvature of the bodies in contact, therefore one may assume that one of
the bodies can be replaced by an elastic semi-infinite space.

When the material is isotropic, its elastic property is governed by two elastic constants.
In the case of an anisotropic body, there are more of these constants. Plane contact problems
in plane anisotropic elasticity have been discussed in the books by Galin [2], and by Green
and Zerna [3]. In both these books, the close similarity between isotropic and anisotropic
problems has been emphasized. However, due to the conciseness of the treatment in Green
and Zerna and an apparent oversight in Galin, it has not been brought out that in certain
important practical situations the stress functions for the isotropic and anisotropic materials
are of the same form. Moreover, in these cases the form of the expressions for pressure
distribution underneath the punch is independent of the material properties of the half
space. We shall discuss these points and illustrate our results with the Hertz contact
problem. It will be shown that in these cases the normal displacements at the contact
surface are of the form (2a% — x?) and the pressure distributions are of the form (a? — x2)!/?
regardless of whether the material is isotropic or anisotropic. In the latter case the stress
distribution inside the elastic body is generally not symmetric, although the external load is
symmetric: the only exception is when the material is orthotropic and one of its axes of
symmetry coincides with the axis of loading.

An analogous mixed boundary value problem is to specify a tangential displacement
over a region at the surface and no stress elsewhere on the surface. The stress functions for
the isotropic and anisotropic materials are again found to be the same, and the shear stress
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distribution where the displacement is specified is of the same form. Finally, we write out
the solution to the Hertzian sliding contact problem with the frictional effect included.

In practice, many of the crystals of interest possess only three (cubic crystals) or five
(hexagonal crystals) elastic constants. However, usually the axis of loading does not
coincide with one of the axes of the crystals and one needs to use the general formulation
contained in this work.

We have computed the plane stress fields of some anisotropic materials under indenta-
tion with and without sliding. A detailed description of analysis and numerical results of
the corresponding isotropic problem may be found in a paper by Poritsky [4]. The elastic
constants used here are those of copper and zinc. We tried different orientations of the
crystal axes with respect to the geometric axis of loading. We are interested mainly in the
maximum shear stress. For an isotropic material under indentation only, it is known that
the greatest value of the maximum shear stress occurs on the axis of symmetry at a depth
of about four tenths of the contact width. It has been generally assumed that for an ortho-
tropic material in which the material and geometric axis coincide, the stress would still be
situated on the axis of symmetry at some distance below the contact surface. The above
assumption is found to be not true. The maximum value may lie outside the axis of sym-
metry, or it may lie on the contact surface. In other words, the stress distribution for an
anisotropic material may depart quite radically from that for an isotropic material.

In three-dimensional elasticity, the transversely isotropic material appears to be the
only anisotropic material for which analytical approach is possible. In view of the numerical
results found in plane problems, it is important to investigate the cases of the contact of
spherical bodies composed of this type of anisotropic materials. From a knowledge of the
isotropic solution (Huber [5], and Hamilton and Goodman [6]), closed-form solutions for
indentation and sliding are obtained. Using the indentation result, we have computed the
numerical values of the stress components in several anisotropic materials. It is found that
in some anisotropic cases the maximum shear stress distribution can be quite different
from that in the corresponding isotropic case. In particular, the point of maximum shear
stress may not be situated on the axis of symmetry. This result shows that a knowledge of
the stress field along the axis of symmetry only is not adequate for the determination of the
greatest maximum shear stress.

It is not, of course, implied that maximum shear stress is the yield or fracture criterion
in anisotropic materials. One would expect that in different types of anisotropic materials
such as crystals, fiber-reinforced materials, or soil, the mechanism for failures would be
quite different. In crystals, for instance, the critical values to look for are probably the
shear stresses on the slip planes. The important lesson to be learned from this study is that
stress distributions in isotropic and anisotropic materials may turn out to be quite dif-
ferent ; and intuitions and conclusions inferred from the former may not be applicable to
the latter. Whenever possible, one should compute the stress field for each case individually.
For this problem we have provided the analytical results for the purpose.

2. PLANE ANISOTROPIC PROBLEMS

A. Basic equations
Hooke’s law for an anisotropic body in plane elasticity has the following form (Green
and Zerna [3]):



Stresses in some anisotropic materials due to indentation and sliding 193

du
x
exx = {»;x = Slloxx+sllayy+sl66xy’
L/
ou, Ou
— y
exy - ay ax - Slﬁaxx+5260yy+s()6axy> (1)
du
— y
eyy - ay - SIZGxx+5220yy+5266xy‘

For plane stress, the s;;’s are equal to their respective elastic compliances, the f;;’s. In
the case of the plane strain, the s;;’s are combinations of elastic compliances, as can be
easily shown.

In the case when the material is isotropic, the s;;’s may be expressed in terms of the
Young’s modulus (E) and Poisson’s ratio (v). For plane stress they are

S11 = 855 = 1/E, Sy = S16 = 0, ?
S;, = —V/E, S¢e = 2(1 +Vv)/E.
For plane strain they are
Si1 = S33 = (1=VY)/E,  s,6 = 816 = 0, o
S12 = —(v+Vv3)/E,  s¢¢ = 2(1+V)/E.
The components of stress should satisfy the equilibrium conditions.
LR
o 0y 4)
ox  dy

Combining equations (1) and (2), it can be shown that the stresses and displacements in an
anisotropic body can be expressed in terms of two functions of complex variables
Zy = XY, Zy = XY (5)
#; and p, and the complex conjugates ji; and fi, are the roots of the equation.
Syai* —28164> +(251 5+ S66)H° — 25361+ 535 = O. (6)

The stresses and displacements are expressed in terms of two complex stress functions

¢1(z1) and ¢,(z,),

O = 11(21)+ B1P1(2,) + 13005(22) + 13P5(Z,). (7
Oy = — 1 @1(21) ~ 1101(Z1) — 12005(2,5) — [1,P5(Z,). ®)
0y = @1(z1)+G1(Z1) + Pa(z2) + ,(2)). 9)
e = P191(21)+ D191 (Z)+p292(22)+ P2BoAZ,). (10)

u, = q101(z2)+7,101(Z1) +q202(22) + G20 (Z,). (1)
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Ip equations (10) and (11), the constants p, , p, and g, , g, are given by the following expres-
sions

Pt =Sufi+Si—Si6ity,

P2 = S1H3+ 512 S16ka-

4y = (1205 + 822 —Sy61)/ 1y,

g2 = (51285 + 522 —S36145)/lts.

(12)

When the material is isotropic, the complex variable formulation for stresses and displace-
ments are well known. We have

Ot 0,y = 2P+ P,
Opy =0t 20, = 226" () + U/ ()],
2G(us+iu,) = Ké(2)—z¢'(2)—¥(2), (13)
K = 3—4v (plane strain),
K = (3—v)/{(1+v) (plane stress).
where G is the shear modulus.
B. Load normal to surface of the half-plane

We shall consider the medium occupying the half-plane y > 0, which we shall call $™.
A schematic diagram of the loading is shown in Fig. 1. The boundary to the half-plane is

V4
I S+
e B
‘io /___......x
5
b2 e ]

FI1G. 1. Schematic view of contact and sliding. The elastic body is the upper half-space. The normal
force and tangential force are both in the positive y and x directions.

0, . We shall assume that there is no frictional force between the punch and the half-plane,
so that the resultant force is normal to the surface of the half-plane. The boundary conditions

on the surface are
Oy =0 everywhere on O,

Gy =0 on O, outside segment C {14)

, = F(x) on segment C
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where segment C is the contact area beneath the punch and half-space. F(x) is a known
function defining the shape of the punch. Segment C will be taken as the scgment

—a< Xx<a

1. Anisotropic medium. We shall assume that the functions ¢,(z) and ¢,(z) in equations (7)
to (11) are related by

¢1(2) = 1,0(2)/ (1, — 11
$2(2) = 1 (2} (py — pa)

Thus the condition that shear stress is zero on the surface y = 0 is now satisfied, and on this
surface g,,, du,/0x are

(15)

Tyy = [¢’(Z)+$I(E)]3 {16)
du, — _‘Ilﬂz_fh#x¢,(Z)__§1ﬁz_ézﬁ1 &3 (17)
0x By —Ha y— iy

By using equations (12) and (6) the term (g; s —gafty)/(ity — ;) is found to be always
imaginary. Hence equation (17) can be written as

o = 5, (#1030, (1%
X

where §, is defined as

- 1
5, = Im[‘i_l‘_ﬂ] _ mz;[-_;J,L__L]_ 19)
Hi—H2 Zijpy #y o pa By
iy and y, are found from equation (6).

The boundary conditions described by equations (14) now give the equations governing
the function ¢'(z),

Re{¢p'(z)} =0, |xI>a,  y=0
F'(x)
28,

(20)
Im{$'(2)} =

Ixl < q, y=0

This is a particular case of the Hilbert problem and the general solution to it is known to be
(Mikhlin (7], p. 311),

1 ® FO/a*—t?) dz+ M
2n8/(a* =21 ) _, t—z Jia*—z%)’
M is a real constant and is zero where no sharp corners are in contact between the punch

and the elastic half space. For our purpose we shall restrict ourselves to smooth punches
and take M identically zero. The pressure distribution exerted by the punch is

0,y = 2Re{$'(x)}, 22)

P2 = 2n

and the resultant normal force is

1 % tF(ydt

H By ] *)
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Combining equations (21) and (23) to eliminate S, , we obtain,

oy Y Fn/(a*—1%) ¢ (F(t)de
¢'(z) = 27{\/(32_22)[_”0 o —=dt /f N (24)

An examination of equations (22) and (15) shows that the pressure underneath a smooth
punch as well as the form of the stress functions are independent of the elastic property of
the half space.

It is reasonable to expect that the above results are also true for isotropic elasticity
where the governing equation is biharmonic. For the sake of completeness we shall give a
brief sketch of the same physical problem.

2. Isotropic medium. If we set in equations (13), the following relation

2P (z)+yY(z) = ¢(2) 2%
then the requirement of vanishing of shear stress is satisfied. Along the boundary O,

o,, = 2Re{d'(2)},

A (26)
2652 = (1+k) Im{¢'(2)}.
x
The boundary conditions described by equation (14) now lead to
Re{op'(z)} = 0, x| > a, =0;
{d’( )} Ix| y 27

2G
{ff)()}‘mF() Ixl <a, y=0.

This is again a particular case of the Hilbert problem as in equation (20), and the solution is
of the same form as is given by equation {21),
) 2G “ F(t)/(a*—t?)dt M
d) (z) = P 3 \/ - + 2_ .2
(1l +k)W/(a®*—-2%) ), t—z Jtar—z?%)

(28)

Again we shall assume that the shape of the punch is smooth and assume H equal to
zero. The resultant force is

4G (* tF'(f)dt

Y= )L Je=oy

(29)

Equations (28) and (29) should be compared with equations (19) and (21). It appears that
they would be the same pair if the constant §, were replaced by (1 +k)/4G).

3. Example: Hertzian indentation problem. Assume that the elastic plane is indented by a
circular shaped punch of radius R expressed as

F(x) = d—x*/2R 30
Then

F'(x) = —x/R
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and the total indentation force is

Y = na?/(2S,R), (anisotropic material); (31)
Y = 2nua’/[(1+ k)R], (isotropic material). (32)
The stress function is
, iy > 2
¢'(z) = Eg{\/(z —a’)—z}, (33)

and the traction along the boundary y = O is

2\ 172

6y = —%(I—Z—z) |x| < a, y =0;
(34)
= 0g,, =0, |x] > a, y=0.

Equations (33) and (34) are valid for both the isotropic and anisotropic materials. This
result illustrates thatif S, = (1 +k)/(4G), then the penetration of the punch and the pressure
distribution between the punch and the half-space are identical. The maximum contact

pressure which we shall call g, is
qgo = 2Y/na. (35)

Usually in contact problems we do not know a, the half-width of the contact area, but
we know R which is the radius of curvature of the punch. Combining equations (30)and (33),
eliminating a, we find the formula for maximum contact pressure in terms of the load and

radius of curvature,
Y
9o =\/(ZSlnR)' (36)

In the case of two bodies in contact, the generalization is completely analogous to the
isotropic situation, and the half contact width is

_ YR R,(S,;+S))
Sl el ‘3”

where S, and § are from equation (19) for the two elastic materials in contact. The constant
S, is a measure of the compliance of the material under indentation. For an anisotropic
material, the value of §, also depends upon the orientation of the crystal axis with respect
to surface of the half-plane.

C. Load tangential to the surface of the half-plane

We shall again consider the half-space y > 0, and prescribe the boundary condition
along the line y = 0, i.e. the O, axis. We now assume that, at the surface of the half-space
shear stress is prescribed over part of the boundary, and tangential displacement over the
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other part of the boundary, the normal stress being zero everywhere. Following the nota-
tions of equation (4), we have along y = 0,

oy = 0;
0 =0, X > a; (38)
u, = H(x), |x| < a

where H(x) is a known function defining the tangential surface displacement.
We shall assume in equations (7)(11) that

d1(zy) = ¥lz,)/(uy — 1),
D(2;) = Y(z,)/(uy — 12).

The condition that normal stress vanishes on the plane surface is now satisfied. And on this
surface y = 0

(39)

0.y = Y(2)+ ') (40)
@_x:l)l—l’z : Pi—DP2 o,
0x Il1“ﬂ2l//(2)+ﬁ1‘ﬁ2$(2). 1)

By using equations (12) and (6), it is found that the term (p, — p,)/(1t, — 1, ) is always imagi-
nary. Equation (41) can now be written as,on y = 0

6ux . ’ T (=
F —i8,{Y'(2)—¥'(2)}, (42)
where S, is real and defined as
s o
Sy = =5 e = — i) (43)

The boundary conditions defined by equations (38) now give the equations governing

¥'(z):

Re{y'(2)} =0, x| > a, =0;
e{y/'(2)} e x| >a, y @)
X
Im{y'(z)} = 55, Ixl < a, y = 0.

The above set of equations is exactly the same as in equation (20), except that H'(x)/2S, is
replaced by F'(x)/28,, and the general solution is

- 1 “ H(t/(@®—1*)de N
B 2nS,./(a* —z?) J_a t—z +\/(a2_zz)' (45)

In the above equation N is a real constant which may be set to zero when shear stress is
finite on the surface of the half-plane. The resultant transverse force X is

Y'(2)

1 [ tH'(t)dt
S, J afla =1}
and the shear stress distribution between —a < x < g,ony = 01is

0. = 2Re{Y/(2)}. (47)

X=- (46)
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We shall not go through the analysis for the isotropic material here. We can prove that
for the isotropic material the relationships between shear stress, tangential displacement
and transverse force are described by equations (45), (46) and (47) if S, is replaced by
(1 +k)/(4G). In other words, on the surface y = 0, if we prescribe the condition that normal
stress is zero everywhere, and shear stress is zero except over the section where tangential
displacement is prescribed, then the shear stress distribution over this section is the same
as in the isotropic case except for a multiplicative constant S,. This constant S, can of
course be eliminated from the equations if the resultant force x is known.

D. Indentation with transverse motion (sliding contact)

When a punch is pressed down onto the half-space and then moved in a transverse
direction, the usual assumption of coulomb friction is to have

Oy = T PO, (48)

where p is the coefficient of friction. The plus-or-minus sign indicates that the direction of
motion is positive or negative along the x-axis. The exact approach to this problem is to
replace the first boundary condition from equations (14) by equation (48), and proceed to
analyze that problem.

The generally accepted approximate method ([13], [6], [7]) to study indentation with
sliding consists of two steps. The first step is to solve the punch problem without friction, as
we have done in Section B. From a knowledge of the pressure at the surface, the shear stress
that would occur upon sliding is found through equation (48). The second step is to solve
the elasticity problem with the prescribed shear stress. The superposition of the two
solutions gives the approximate solution to the problem of indentation with sliding.

The procedure described above can be very simply formulated using the results in
Sections B and C. Comparing equations (22) and (47), it is seen that the condition (48) is
satisfied if the stress functions ¢(z) and y«(z) are related by

Y(z) = £pd'(2). (49)

In other words, for any indentation problem described by equations (14), if the stress
functions for contact without sliding are given by equation (15), then the stress functions
for contact with sliding are given by

P1(zy) = (2 )" (z)/ (1t — 11y)
5(z2) = (1, T )@ (z)/(uy — p).

In the case of Hertzian contact, the stress function ¢'(z) has been given in equation (33).
After the stress functions ¢, , and ¢, are found, the stress field throughout the half-space is
obtained using equations (7), (8) and (9). The stresses are

Z_Y; Re{ﬂf(#z —P)[(Zf -—a2)1/2 —2z4] _ﬂg(lﬂ —p)[(Z§ —02)1/2—22}}

(50)

O-Xx =
na Ha—
2Y o J 0 =P —a)? — 2,1~ (= p)l(es — a2~z
Oy = &?RC{ 2 1 1 — 1 2 ) 2] (51)
Hy— Iy
Lo Re{m(m—p)[(zf—aZ)'“—zlJ—uz(ul—p)[(z%—al)”z—zﬂ}
Y na? Ha— '
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In equations (51) we have assumed that the transverse motion is along the positive x axis.
The value of p will have to be negative if the motion is in the reverse direction. The values
of i, and y, are obtained from equation (6).

E. Numerical results

We have computed the stress fields in several anisotropic materials, induced by Hertzian
contact without sliding, i.e. using equation (51) with p = 0. We assume that the anisotropic
materials are made up of copper or zinc crystals oriented at different angles with respect to
the geometric axis of loading. The values of the elastic constants of the two crystals have
been taken from a survey paper by Huntington [8]. The numerical data will be presented in
the form of contour lines of constant maximum shear stress in the plane of loading. The
dimensions and load are normalized such that the width of the contact area is 2, and the
maximum pressure within the contact area is unity.

Copper is a cubic crystal, whose elastic properties are described by three elastic con-
stants. In Figs. 2-6 we show the contours of maximum shear stress within the copper
crystals at several different orientations. In Fig. 2 one of the crystal axes coincides with
the O, axis, the direction of loading. We note that the contour lines are symmetric, and the
maximum shear stress occurs at two symmetric points away from the axis. Along the axis,
the local maximum is about 0.247, while the actual maximum over the whole half-space is
0.314. Figures 3, 4, and 5 show the contours when the crystal has been rotated by 10°,
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22.5°, and 30°, respectively. Note that the position of the maximum value gradually moves
to the center as the crystal is rotated. At 45° the contour lines are again symmetric with the
O, axis as may be expected for cubic crystals. Figure 6 shows that for this case the maximum
is situated on the axis.

Next we consider the zinc crystal oriented at some angle with respect to the O, axis.
Zincis an hexagonal crystal whose elastic property can be described by five elastic constants,
and possesses only one axis of symmetry. We first line up the material axis with the O, axis,
and Fig. 7 shows the maximum shear stress contour lines. We then rotate the crystal by
45°, 60°, and 90°. Figures 8, 9, and 10 show the maximum shear stress plots for these three
cases respectively. Note that in the last case, there are two local maxima at two symmetric
points, while the actual maximum is at the contact surface.

We have also studied a number of cases with the effect of sliding included, i.e. p # 0
in equation (51). It does not seem profitable to present a profusion of data on the effect of
sliding for different anisotropic materials. It appears that in anisotropic indentation
problems, the greatest value of maximum shear stress is still located in the vicinity of the
contact arca. However, if one wishes a detailed description of the stress field, one must
compute each case individually, since the results for one material may differ considerably
from the results for another material.
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3. THREE-DIMENSIONAL PROBLEMS IN
TRANSVERSELY ISOTROPIC MATERIALS

A. Basic equations
In a transversely isotropic elastic solid the stress—strain relationships are given by

Oy = C11€p +C12€g9+ C13€z2,

Ogp = C12€pt+C11€99+ C13€zz,

Ozz = C13€, 1+ C13€0p+ 3362z,

(52)
Ogz = C44€9z,
Grz = C44€pz,
1

ars = 2(C11—C12)erp-
In the above equations, (r, 8, z) is a set of cylindrical coordinates with the z axis parallel
to the material axis. The five ¢;;’s are the elastic constants. We shall now define some

dimensionless parameters to be used in the potential function solutions. Let v, and v, be
two roots of the algebraic equation

1140V +[C13(2¢44+C13)— 11033l +Cy3¢44 = O, (53)
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and
vy = 2¢44/(C11—¢y) (54)

It may be proved from the requirement of the positive definiteness of the strain energy
function that v, and v, must have real positive parts. v,, of course, must be real. We shall
assume that v, and v, are not equal. Two more parameters k; and k, are defined as

kj = (ci1v;—Caa)/(Ci3+Caa), (j=1,2). (55)
We now define
z; = z/\/v;, (j=1,23). (56)

It can be shown (e.g. [3]) that the equilibrium equations are satisfied if the displacement
components are represented by three potential functions ¢(r, 0, z), d,(r, 0, z), and ¥(r, 6, z),
which are harmonic in the (r, 8, z) space:

0 ,(r, 0, Zl)+0¢2(r, o, zz_)+6l//(r, 6, z5)

Caakdy = or or rof
_ ad)l(r’ 0’21) a¢2(r’ 9522) al/l(r, 0523)
R T Fra. 7)
) _ ki8¢ (r,0,z,) ky0¢(r,0,25)
Caakh: = oz + 0z ’

From equations (52) and (57) and the relationships between strains and displacements, the
stress components may be expressed in terms of the potential functions ¢, ¢,, and .

The physical problem of a rigid sphere indenting an elastic half-space is the characteristic
of torsionless axisymmetry, i.e., ¢, and ¢, are independent of the coordinate 0, and we
may set iy = 0. The displacement components are now

_ 091, 21) | O¢alr, 22)

Casltr = or or
R (58)
, _ ki0g(r,z1) | ky0¢(r, z5)
Cadle = =5
The stresses are
G, g = 2 _1‘_1+k1 62¢1(r2321)+2 i_i*’kz 52¢2(rzazz)
"3 Vi 621 Vi V2 822
2§ 02 5,
Ory—0gg = — 7 3[P1(1, 21) + @a(r, 22)] —— (1, 21) + Pa(r, 25)]
v Or ror
62(151(’,21) 52¢2(r, z,)
= = — 4+ k) —F

14k 224, 21)+1+k2 2P,(r, 2,)
v ordzy Jv2 o 0rdz;

0,z

Ggz = Ogp = 0
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B. Hertzian contact, normal load

We shall be concerned with the stress field due to a circular contact region on an elastic
half-space carrying a spherical rigid punch providing Hertzian normal pressure. The
boundary conditions on the plane z = 0 of the half-space z > 0 are

o,. =0, (60)
—P(a?—r%)!1?, r<a
Ozz =

0, r>a.

(61)

The stress components 6y;, 0,9 are zero everywhere due to symmetry. The quantity P/a is
equal to the maximum pressure, and is related to the normal load by the equation

P = 3W/2na®). (62)
The stress field vanishes at large distances from the region of contact.

It can be shown that equation (60) is satisfied if we set

_ Pym
¢1(r7 Zl) - (1+k1)(\//‘vl_\/’\‘Z)G(razl)y

Py (63)
r, z,) = 2 G{r, z,).
$alr.2) = (e v 6
where G(r, z) is a harmonic function.
Equation (61) is then reduced to
82G(r 2) _(az_rz);2 r<a,
- oz2 - (64)

#=0 0, r>a

The form of the expression for G(r, z) may be deduced from the analysis in [6]. We shall
record the function G(r, z) and the derivatives necessary for finding the stress and dis-
placement components. Defining

then t=ztia, pP=r4rd (65)
G(r,2) = %Im{(gj—iaﬂ—;ﬂz loglp +0—12 0+ rp +-3L;‘-’3+%rzz},
69;;, Doy Im{(s* —2iat —r*) log(p +1) —3pt + 2iap + b},
ﬁGEr,z)zflm{_zlog(p+t)_lz_+ 242 +12+gp}
o 2 p+t 3p+1) 2730

(66)

a*G(r, z) 10G(r,z) pi4pt+t? dar |
or? roor p+t) p+t—§z ’

32G(r, 2)

“— = Im{zlogt+p)—p},

*Glr,z) _ v L it
i B ARAS P+f}"
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It can be readily verified that G(r, z) is a harmonic function and that equation (64) is satis-

fied.
From equations (59) and (64), we find that the stress components are

2p , i 1\82G(r, z,)
O+ 0gg = -~ \,"/ Vi e

(Jr1—=/v2) vl +ky) vy oz )
o 1\2G(r. =)
e " e o —_———
A E U R =
2P Jvi | @26 z)  EG(r, zy)
Op—0Ogg = = 74T 7T TS
vl v =) [Tk or rér
/ N2 3 a¥a -
V2 | €°Glr,z2)  ¢G(r, z,) )
SR b AE S et 1o 68
1+k2|: ar? reF (68)
P . O*G(r,zy) 3*G(r, z5)
o g e ©
N N (i G | (709
(Vvi—vval éziér (z,0r

C. Tangential load

We assume that the rigid sphere in its vertical load has provided a contact pressure
distribution of 6., = — P(a” —r?)"/? within the circle r = a. If the sphere is in horizontal
sliding motion, the frictional effect between the surface of the half-space and the sphere at
z = 0 can be described as

o,.=0, (71)
{Pf(az—rz)”, F<a,

0, F>od.

Oy = (72)

where fis the coeflicient of friction. Since we have already calculated the effect of the vertical
load in the previous section, we shall set,at z = 0

0., = 0. (73)

In this problem it is more convenient to use the rectangular coordinate system (x, y, z).
We now write out the stress components in terms of the three potential functions ¢ (x, y, z,),

¢2(X, y’ Zl) and l/I(X, y’ 23)-

Oxxt0, = 2(i_1i12)32¢1(x, ¥.21) 1_}&)@2£.§2>,z_;)
e vy v dz? vy, dz3
2{a* 82
Oxx —Oyy = 73(5);5—(5?) [¢1(X, Vs Zl)+¢2(x’ ¥, ZZ)]

4 *(x, y, 23)

Vs 0x0y




Stresses in some anisotropic materials due to indentation and sliding 209

2 9
= s Vs + Ay Vo &
e L YN O
1{o* &
—\,—3(5}'5~5F)l//(x, Vs 23)
2 62 s
Op = (1+I\1)0 ¢1(x’2yazl)+(1+k2) ¢2(X’2),"Z-”2-)
0z3 0z
(1 +k1) az¢l(xs }",Zi) (l+k2) 62¢2(vx3 y’ ZZ)
Oy = 7 -+ 7 e
AR 0x0z, V2 dxdz,
1 aziﬁ(x, ,V» 23)
+* =
Jvs o dyéz,
(1+k) Pi(x, 3,21} (L+ky) 2s(x, v, 25)
Oyz = 7 A + -
Vi dyéz, NA dydz,
2
_ L Yoy zy) (74)
Vs 0xdzy
We now set
fPJ{vyvy) 8H(x, y,7y)
X, Y, 21}) = 75
qsl( y 1) (1+k1)(\/\’1—\/v2) 83( ( )
fP\/(Vl"z) OH(x,y,z,)
X, Y, Z3) = 76
¢2( y 2) (1 +k2)(\/\)2 —\/V!) ﬁx ( )
¢H(x, v,z
W(x, y,z3) = P/ »’3""&6,_;1& (77

where H(x; y, z) is harmonic in (x, y, z). It is readily shown that all the boundary conditions
on z = 0 are satisfied if

—(@®-r)?, r<a,
= (78)
0, r>a

O3H(x, y, z)
A
Z z=Q

Noting the similarity between equations (78) and (79), the required potential functions can
be deduced from the function G(r, z). We find that

6H(x’ Vs Zl) -

= xA(r, z}
0x
(79)
5H(X, yazZ)
—— = YA(r, 2)
dy
where
1 I Stp  (dia—t)(p® —t3) 1 iat
A L 4l AT A Y S s St
(r, 2) 3 m{( 2+ 2 +lat) log(p +1)+ 3 + 12,2 1ap+4t 5 (- (80)
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Note that the derivatives of A4(r, z) are
fA(r, z) aG(r, z)

P 2 31
0z rér
CAlr,z) 1 {r Hp—ty tp>—1%) *p
A2 L imd Dloglp+n+ 0 e
o T Mgloe TS 6rF  4r?
5 (82}
rooiat ta(p —13)
+,+ et o e e,
8 r 3rd }
Q2A(r,z) 1, | 3 Plp—1)(p+20)
A= Simjlogtp s e TS
(83)
tp (p +t2) iat ‘_la(p ~l3) 2iap
2r? 4pr* P " oy

The stress components and displacement components can all be written out in terms of the
derivatives of A(r, z). The three displacement components become

fP\/’("sz) {
(1 +k1)(\/’/“2 - /‘ 1)

Alr, z ))+£_. fwA( . )J

or

Cagqly =

fP 12\1} x* €A(}",“2)
NS “\//"2){ oy "‘?{*J (84)
g |
¢

ot = fPJviva) Xy CA(r, 212_*_ FPY(vavy) Xy 0A(r, z,) (85)
T Ak ) (Jra =y ¢ (IT+k)Jvi—fva) r ar

kax\/’("l"z)x CA(r, z,) kaz\/’(Vlvz)x JA(r, z,)

Cqaltz: = - : , : ~ {86)
e (L+k)(/va—/v) @z (1 +k)(/vy—+/v2)  Czy
The stress components are:
fPYv, {OA(r, zy) X 02A(r,z,)}
Oxz = 73 +
(Vva—+/v1) oz, r 0rdz,
fPYvy {E?Agr, z2) X 02, zz)} &)
(\/n \/vz) iz, ro 0rdz,
OA(T', Z3) y2 6214(1”, ZJ)
+fP{ 0z * rooordzy |
fP xyf Q2A(r,z) , CPA(r.zp)]  fPxy ¢*A(r, z3) ,
Gy = R L A PV A e — 3 ) (88)
(Jya—vy) r oréz, oroz, r iz,
oo = fo\/(vlvz){azA(r zZy) 62A(r2£27] ‘ (89)
(\/V ’—‘\/\f'z) 621 622 (
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2fP\/(V1V2) {"1 —(14+ky)vs aZA(r, Zl)_\’z—(l +ky)vs 62A(r, 22)}’ (90)

Tux Ty = "3(\/"2—\/"1) vi(l+ky) k1 V2 62%
C2fPJviva) [ 1 [3xr2=2x7 6A(r,zl)+x(x2-— y?) 82A(r,z,)}
Txxt Oy = (Vva—=vivs L1 +k, r? or r? or?
1 3xr2;2x3 QA(r, 22)+x(x22— ¥?) aZA(rZ, z5) 1)
1+k, r or r or
4fP[ xy? 0?A(r, z3) V: 8A(r,z3)}
NG ar? P or ’
2fPJ(vivy) f 1 [xzy *Alr,zy) |y QAL Zn)J
Oxy =775 / - 7 t3
(V2= vova {1 +k | r or r or
1 | x%y 8A(r,zy) y® QA(r, z,)
Ttk ['7 R ©2)
SP[3yr2 =2y 0A(r,zy) Wy* —x?) O*Alr, 23)
Vs r? or r? or? '

D. Numerical results

Using the elastic constants of a number of crystals, we have computed the stress fields
in these materials under Hertzian contact with a rigid sphere. We have plotted the maximum
shear stress distribution for three representative cases. For the purpose of comparison we
have also plotted in the shear stress distribution of an isotropic solid with Poisson’s ratio
equal to 0.3. The dimensions have been normalized : the maximum surface pressure is equal
to unit pressure, and the radius of the circle of contact is of unit length.

Figure 11 shows the maximum shear stress distribution in the isotropic material. As
is well known, the greatest value occurs at approximately 0.48 below the surface along the
axis of symmetry.

When the material is f-quartz, the situation is very similar to the isotropic case shown
in Fig. 12. The greatest value of maximum shear stress is 0.324 and lies approximately 0.43
below the surface along the axis of symmetry.

In Fig. 13, the material is a zinc crystal. The highest value of maximum shear stress occurs
on a circle of radius 0.8 and depth 0.3 below the surface of contact. The magnitude of
the maximum shear stress is 0.296. However, in this case there is also a local maximum
at the surface at the edge of the circle of contact. The magnitude of this local maximum
is 0.285.

4. DISCUSSION

The analysis for plane elasticity presented here is contained in the general formal treat-
ment given by Galin. Galin did not realize that the terms (qyu, —qp,)/(1t; — ;) and
(p2 —p1)/(uy — p5) were always imaginary ; he apparently thought that these terms were
generally complex. As a result, Galin’s formal solutions are much more complicated, and
do not exhibit the features that the pressure distribution at the bounding surface are of
the same form for isotropic and anisotropic materials, and that the stress functions are of
the same form. In this paper, we have attempted to show that the anisotropic elasticity
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F1G. 12. Maximum shear stress distribution——f-quartz.
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FiG. 13. Maximum shear stress distribution—zinc.

problem can be solved as easily as one would solve the corresponding isotropic problem.
In fact, since the stress functions are the same, a knowledge of the solution to one leads
immediately to the solution of the other. Green and Zerna considered the normal load
case in a rather concise manner. They arrived at equation (20) and left further analysis and
applications to physical problems to the readers. They did not consider the tangential
load case.

Numericai results for the plane problem lead us to consider the three-dimensional
problems. Recently, Conway, Ku, and Farnham [9], and Conway and Farnham [10] have
presented numerical results of maximum shear stress distribution in a hexagonal crystal
along the loading axis, under the implicit assumption that the maximum shear stress would
occur along or near this axis.

The integral transform method employed in [9] and [10] is not suitable for finding
stresses outside the loading zone. Following the work of Hamilton and Goodman [6], we
have derived closed-form expressions applicable anywhere within the half-space. The
numerical results indicate that the position of the maximum shear stress could be situated
outside the vertical axis for some materials.

Itisrelevant to mention that Brilla [11] has considered some general punch problems for
the elastic anisotropic half-plane, where the displacements u, and u, are both prescribed
underneath the punch. Willis [12] has considered the more general situation of three-
dimensional contact of general anisotropic bodies in which the contact area is an ellipse.
Sveklo [13] has also analyzed the Boussinesq type problems for the anisotropic half-space.

Acknowledgement—The author wishes to thank the referees for calling to his attention the works of Brilla and of
Sveklo.
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AGcrpakt-—B pabote paccmarpuBaerCs NONe HANPMKCHHHE B KOHTAKTHOH 3anaye I'epld napanienbusix
LMAHHAPOB, W3TOTOBJEHHBIX M3 HEKOTOPBIX OBIIMX aHU3OTPONHBIX MATEPHANIOB M KOHTAKTHOH 3alauM
Tepua MONEpeYyHo M3OTPONHLIX chepHyeckux Ten. BhIBOAATCA aHAAHTHYECKHE GOPMYIIBI, B IBHOM BHIE,
117151 KOMIIOHEHTOB HANIPSHKEHHA JUIA KaXAOTo ciiyyasi, UHCHeHHbIe Pe3yAbTAThl YKA3bIBAKT, YTO pPacnpes-
eNeHne MAaKCHMANBHOTO HAlpAXEHHS CABHIra MOXeT 3HAYMTE/IbHO OTKIOHATBCH OT NonobHOro cnydas
H30TPOMKHU.



